ABGs and Acid Base Imbalance

Normal Values

⁻ pH: 7.35-7.45

- PaCO₂: 35-45 mmHg

- HCO3-: 22-26 mEq/L

Steps For Interpretation

- 1. Is the pH high or low?
- 2. CO₂ will go the opposite direction to the pH if there is a primary respiratory problem.
- 3. HCO_{3} will go in the same direction as the pH if there is a primary metabolic problem.
- 4. Everything going the same direction: respiratory compensation for a metabolic problem.
- 5. CO₂ and HCO₃- going the opposite direction to the pH: metabolic compensation for a respiratory problem.
- 6. If the pH is in the normal range, but both CO_2 and HCO_3^- are abnormal, there is full compensation, the original issue will be the end of the normal range the pH is closest to.

	ABG Findings	Causes
Metabolic Alkalosis	Uncompensated - $pH > 7.35$ - HCO_3 - High - $PaCO_2$ Normal Compensation - $pH > 7.35$ or N - HCO_3 - High - $PaCO_2$ High	 Vomiting Potassium depletion (e.g. diuretics) Burns Ingestion of basic substances (e.g. cleaning products)
Respiratory Alkalosis	Uncompensated - $pH > 7.35$ - HCO_3 · Normal - $PaCO_2$ Low Compensation - $pH > 7.35$ or N - HCO_3 · Low - $PaCO_2$ Low	 Due to hyperventilation of any cause CNS (SAH, Stroke, Meningitis) Asthma Anxiety Altitude Pregnancy PE Drugs e.g. salicylates
Metabolic Acidosis	Uncompensated - pH <7.35 - HCO ₃ Low - PaCO ₂ Normal Compensation - pH <7.35 or N - HCO ₃ Low - PaCO ₂ Low	 Increased H+ Production: DKA Lactic Acidosis Decreased H+ Excretion Renal Failure Renal Tubular Acidosis Loss of HCO₃- Diarrhoea Pancreatic fistula Renal Tubular Acidosis

	ABG Findings	Causes
Respiratory Acidosis	Uncompensated - pH <7.35 - HCO ₃ · Normal - PaCO ₂ High Compensation - pH <7.35 or N - HCO ₃ · High - PaCO ₂ High	Raised ICPEncephalitis

Anion Gap

Metabolic acidosis can also be considered as having a normal or increased anion gap. This allows further delineation of causes, making diagnosis more straightforward. An increased anion gap occurs when there is increased production or a decreased in excretion of fixed/organic acids.

Increased Anion Gap Metabolic Acidosis

- Lactic Acidosis: shock, infection, ischaemia
- Urate: renal failure
- Ketoacidosis: diabetes mellitus, alcohol

Normal Anion Gap Metabolic Acidosis

- Renal tubular acidosis
- Diarrhoea
- Drugs (acetazolamide)

- Drugs/Toxins: salicylates, biguanides, ethylene glycol, methanol
- Addison's disease
- Pancreatic fistula
- Ammonium chloride ingestion

Want More Practice?

I highly recommend <u>http:///abg.ninja/abg</u> for practicing ABG interpretation. It generates random ABG results that you can interpret, and explains the results once you've attempted them.

References:

Longmore, M, Wilkinson IB, Baldwin, A & Wallin, E 2014, *Oxford Handbook of Clinical Medicine*, 9th edn, Oxford University Press, Oxford, p. 684.

Kin, J & Mukovozov, I 2017, *Toronto Notes*, 33rd edn, Toronto Notes for Medical Students, Toronto, pp. R5-6.